
Math Speak & Write: A Programmer’s Guide

Richard Fateman, Cassandra Guy, Steven Stanek
Computer Science Division, University of California at Berkeley

August 5, 2004

Introduction
Math Speak & Write is a program designed to facilitate mathematics input using both voice
recognition and handwriting recognition. It is our belief that handwriting and speech can be used
to produce a more user-friendly method of math input when compared to systems such as TeX
or the Microsoft Equation Editor included in Microsoft Word.

In our system, users supply math content as many one-dimensional expressions using
handwriting and speech and occasionally click on “colorboxes” to instruct the program to
reposition the cursor. This system allows us to eliminate ambiguity in speech input. For example

the statement “sin x to the power k over y” has several different plausible interpretations:

€

sin x
k

y
,

€

sin x
k
y and

€

sin xk

y
.

(For more information regarding the use of the program, see our Help Menu. This document is
intended for programmers interesting in understanding and modifying the program)

Implementation Foundations
Math Speak & Write was written for Microsoft Windows in the C# programming language. For
handwriting recognition, it uses a combination of Microsoft’s Ink system to collect ink strokes
and our dll version of Jim Arvo’s CIT Handwriting Recognizer1 to recognize written characters
from the strokes provided by MS Ink2 . The speech recognition uses Microsoft’s Speech SDK
5.13 with a custom grammar to optimize it for mathematics input.

We separate data classes from Window controller classes as is shown in the below diagram.

1 Arvo’s original handwriting recognizer is available at: http://www.cs.caltech.edu/~arvo/code/
2 Available in the Tablet PC SDK at: http://msdn.microsoft.com/mobility/prodtechinfo/platforms/tabletpc/
3 Available at: http://www.microsoft.com/speech/download/sdk51/

 1

Here, Windows Form handlers are shown as rounded ovals and data management and
computation classes are shown as rectangles. Solid lines represent classes which are members of
others (or at least have static methods which are called by them) and dotted lines represent
inheritance.

A brief description of the classes follows, more details are discussed later in the document.
• Main Colorbox Window (CBMainWin in CBMainWin.cs): Contains all code for drawing

and managing the principal window of the program.
• Alternatives Window (AltsWindow in AltsWindow.cs): Used only during handwriting

recognition to display alternates to recognized character and allow for user correction.
• Training Window (TrainerMainWin in TrainerMainWin.cs): A window which is

launched from the Main Window for training new handwritten symbols or replacing old
symbols.

• Symbol Chooser Window (SymChooser in SymChooser.cs): Called by the Training
Window to prompt the user to choose which symbols to train.

• CIT Handwriting (CITHandwriting in Handwriting.cs): A static class which contains
methods to interface with the WinCIT.dll, a dll version of Arvo’s CIT recognizer.

• Symbol Data (SymbolData in SymbolData.cs): A class which is used to read symbol

 2

names and their “codes” from the SymbolData files and stores them in arrays for querying.
• NameChecker (NameChecker in NameChecker.cs): A class which looks through the CIT

data dir to see what symbols have been trained and stores them in a hash table for queries.
• RootRDB (RootRDB in CBMainWin.cs): A small class which contains a single RDB for

drawing at a start location. All other RDBs are drawn relative to the one in the Root.
• RelDrawingBase (RelDrawingBase in RelDrawingBase.cs): (Henceforth called RDB)

RDB is an abstract class which contains all methods and properties needed by individual
drawing elements. RDBs are arranged in a tree-like structure which is discussed in more
detail later.

• ColorBox RDB (ColorBoxRBD in RelDrawingBase.cs): An implementation of RDB
which is used to draw user–clickable Colorboxes.

• Symbol RDB (SymbolRDB in RelDrawingBase.cs): An implementation of RDB which is
used to draw Symbols, that is letters, mathematical symbols and numbers, and provide
fields for exponents and subscripts.

• Division RBD (DivisionRDB in RelDrawingBase.cs): An implementation of RDB which
is used to draw division bars and provide fields for the dividend and divisor.

• NRoot RDB (NRootRDB in RelDrawingBase.cs): An implementation of RDB which is
used to draw the Nth Root Sign with the radicand and degree fields.

• Square Root RDB (SqrtRDB in RelDrawingBase.cs): A subclass of NRootRDB which is
used to draw the square root sign, without the degree field.

Discussion of the Symbol Data Structure and Rendering System
Overview
A large part of the Math Speak & Write application is the symbol data structure and rendering
system which is used to display mathematics. The system is built around the Relative Drawing
Base abstract class and its subclasses. In addition to drawing, the RDB class provides
functionality for parsing character sequences which are used to describe nonstandard symbols
(for example: the hexadecimal values for Greek letters in the Symbol Font).

The rendering system is relatively straightforward and although written for Windows, it should
be quite easy to port to other platforms since there is very little Windows–specific code.

Every implementation of the RDB contains at least two pointers to other RDBs, the RDB
directly to its right (the “next” RDB) and the one to its left (the “prev” RDB). Almost all RDB
implementations contain several other pointers. For example, a Symbol contains also contains a
exponent RDB “exp” field and a subscript RDB “sub” field. All terminal RDBs (and some non-
terminal ones) are ColorBoxRDBs. This property means that only Colorboxes are allowed to
link their next fields to null.

For rendering, each RDB draws itself and then its non-previous neighbors which in turn draw all

 3

of their non-previous neighbors. Starting at the left most node we can draw the entire
mathematical expression recursively in this manner. In addition to drawing, we provide similar
methods for recursively determining width and height of an expression, finding mouse click
intersections with individual symbols, and converting the RDB representation to MathML or
TeX strings.

Discussion of Representation using the RDBs
As mentioned before we have 4 subclasses of the RDB, the Colorbox, Symbol, Division Bar and
N-Root. Each overrides many methods found in the RDB class in order to provide the required
functionality. The following summarizes all classes. For more detailed information, see the
documentation comments in the code.

Description of the RelDrawingBase (RDB) Abstract Class
• Description: The abstract class on which all other drawing objects are based.
• Fields:

• RDB prev: The RDB which links to this one using a non-prev field, its “parent”.
• RDB next: The RDB which is directly to the right of this one and is drawn on the

same level. Generally, the next RDB in the mathematical expression.
• int parents: The numbers of parents the RDB has is a crude representation of its

size. Parents indicate changes of level, for example the exponent of a symbol has
one more parent that the symbol, but that same symbol’s next field has the same
number of parents. The more parents a symbol has, the smaller it should be.

• int ID: For debugging purposes, every RDB is assigned a unique ID.
• float width, height: The width and height fields are used to store the width and

height of an RDB, which is defined as everything it encloses. For example, the
height of a division bar is the height of highest point on the dividend to the lowest
point on the divisor but does not include the height of any members of its next
fields. These fields, though world–readable may not be reliable, so use of the
listWidth and listHeight methods for querying width and height is
recommend.

• Various static fields: Contain nextID to be issued, horizontal buffer between
symbols, various fonts, brushes and TeX and MathML information.

• Methods: (some methods excluded)
• addNeighborCBs: Looks at each of the non-previous neighbor fields for an RDB

and determines if they contain colorboxes. If so, it turns the colorboxes on,
otherwise it inserts colorboxes in the field, linking the new colorbox to the old
contents of that field. This method is commonly used to select an RDB and display
its colorboxes.

• removeNeighborCBs: Used to remove “extra” colorboxes, to deselect an RDB.
Colorboxes which link to other non-null RDBs are removed, and terminal

 4

Colorboxes, colorboxes which link to null, are turned off. Effectively, this method
turns off an RDB’s colorboxes to deselect it.

• (static) addWithStr: Takes a string of text (using the special escape sequences
discussed later) and parses it into a series of RDBs which it then chains to the end
of a selected RBD’s next field (or an otherwise specified field).

• (static) convertTextToNumbers: Takes a string containing a spoken
representation of a number and converts it to a numerical representation. (ex: “one
hundred twenty five” to 125) This solves a problem that the speech recognizer
spells out numbers in some cases.

• deleteSelf: Causes an RDB to unlink itself from its neighbors and delete child
fields, effectively deleting it from the tree.

• draw: Tells an RDB to draw just itself (not its children or next field) at given
coords.

• highestY: Returns the highest Y coordinate of an RDB or any of it’s non-
previous (child or next) neighbors.

• lowestY: Returns the lowest Y coordinate of an RDB or any of it’s non-previous
(child or next) neighbors.

• insertRDBAfter: Used to insert some RDBs right after this RDB and link the
last of the inserted RDBs’s next field to the old contents of this RDB’s next field.

• listChangeParents: Recursively increases the number of parents of this and
all non-prev neighbors by a given value.

• listConvertToMathML: Recursively produces mathML expressions to
represent this and all non-prev neighbors.

• listConvertToTex: Recursively produces TeX expressions to represent this
and all non-prev neighbors.

• listDraw: Recursively draws this RDB and non-prev neighbors, takes the
coordinates at which this RDB is to be drawn and coordinates for neighbors are
mathematically generated based on those.

• listGetParentAtLevel: Follows the prev fields backwards to try to find an
RDB which has the requested number of parents or fewer.

• listGetRoot: Finds the first element of a tree of RDBs, follows the prev
pointers backwards until it hits a null.

• listHeight: Finds the height of this and all non-prev neighbors, that is the
distance between the lowest and highest Y coords.

• listHeightAboveDrawY: Returns the maximum distance of any non-prev
RDBs from the drawing Y coordinate to the highest Y coordinate.

• listHeightBelowDrawY: Returns the max distance of this and any non-prev
RDBs from the drawing Y coordinate to the lowest Y coordinate.

• listRDBAtCoords: Given the drawing coordinates for this RDB, this function
to finds the next non-previous RBD which was clicked on at the given click

 5

coordinates.
• readMathMLArrays, readTexArrays: Used to load data for the MathML

and TeX conversions.
• replaceRefFor: Takes an old RDB and searches this RDB’s non-prev fields for

that RDB. If the old RDB is found, it is replaced with the new RDB.
• replaceSelfWith: Removes this RDB from a chain (disconnects it from its

prev and next fields) and inserts a set of new RDBs in its place. Commonly used
for editing.

• (static) RecAddStr: A helper function for addStrWith
• (static) tokStrings: A helper function for addStrWith
• toogleNeighborCBDraw: A simple function which turns the drawing off for

neighboring CBs.
• wasClickedOn: Using the height and width fields in the bounding box and the

draw coordinates for this RDB, determines if it was clicked on by given click
coordinates.

Discussion of ColorBoxRDB
• Description: ColorBoxRDB represents the Colorbox, a square box which can be drawn to

represent a possible choice of location at which a user may input mathematics. A ColorBox
is used to depict a user–clickable location where additional mathematics may be added.
Colorboxes are the only RDBs which are allowed to terminate the expression by linking to
null elements (these are places where additional terms could be added to the expression).
This unique property requires that Colorboxes also have the ability to be invisible, that is,
Colorboxes may exist without being drawn. Colorbox drawing can be turned on and off
locally or indirectly using ToogleNeighborCBDraw on a non-Colorbox object. Lastly,
in some cases, the colorbox may be drawn as “unfilled”, an outline of a square instead of
the usual solid. The unfilled square is drawn to demonstrate something vital is missing, for
instance the divisor of a division bar.

• Fields:
• bool drawSelf: Used to toggle the drawing of the colorbox on and off
• bool drawFilled: Used to toggle drawing between filled and solid

• Methods: No methods of note, other than those which override those in the RDB

Discussion of the SymbolRDB Class
• Description: The SymbolRDB class is used to represent “regular” symbols, those which

do not have special components. All Symbols have an exponent (exp) and subscript (sub)
field, even though these fields may not directly correspond to the symbol (for example the
limits of an integral are still called exp and sub). When the Symbol is converted to
MathML or TeX these problems are resolved. The symbol stores its contents in the form
of a text string, which uses escape sequences (more later) to define nonstandard characters,

 6

symbols and formatting.
• Note on Symbols: There is some ambiguity regarding the difference between one symbol

and several separate symbols though from the presentation point of view, it makes no
difference. For instance, the string of symbols ‘1’, ‘2’, ‘3’ or the symbol ‘123’ should be
equivalent and will produce identical TeX and MathML renderings. There, is however a
difference in selection of symbols, in the former case, the user can select the ‘1’
individually, in the later he must select the entire ‘123’ string.

• Fields:
• RDB exp: The exponent RDB, rendered to right and mostly above this RDB.
• RDB sub: The subscript RDB, rendered to the right and mostly below this RDB.
• string text: A string of text, including specially designed multi-character escape

sequences to represent the characters in this symbol. SHOULD NOT BE SET
FROM OUTSIDE, USE SETSTRING INSTEAD.

• Font greekF: The font in which to render all nonstandard symbols (greek letters and
math symbols). These characters must be provided through escape sequences in the
code. For this program, the Greek Font is Windows Symbol Font.

• Font normalF: The font in which all standard text is rendered. For this program, it
is the Times New Roman Font.

• Methods:
• textToTex: Used to convert the text for this symbol to TeX. Helper for
listConvertToTex.

• textToMathML: Used to convert the text for this symbol to MathML. Helper for
listConvertToMathML.

• lookupTexSymbol/lookupMathMLSymbol: Used in support of the text
conversion to these formats. Looks up a hex symbol in an array and returns the
appropriate MathML or TeX for that symbol.

• containsLetters: Looks to see if the Symbol’s text contains any alphabetic
letters.

• isBold, isItalic, isUnderline, isHex: Sees whether any part of the
string is one {Bold, Italic, Underlined or Hex}.

• getHex: Finds the two digit hex code for hex symbols in the text
• getText: Removes all bold, italic,underline and hex from the string and return it.
• Various calculate Functions: used to internally calculate coordinates for the sub, exp

and next fields
• insertRDBExp, insertRBDSub: Inserts the given RDBs chain in the sub or

exp field respectively, placing any existing RDBs in those fields at the end of the
chain.

• makeBold, makeItalic, makeUnderline: Used to turn Italic, Bold and
Underline on and off for this symbol

• recalculateDimensions: if the text changes, this function can be used to

 7

reset the width and height fields of the object
• setString: Used to change the text of the symbol safely
• setFonts: Sets up the fonts based on the parents fields
• strHeight: Determines the height of string using this Symbol’s fonts
• strWidth: Determines the width of a string using this Symbol’s fonts
• strWidthRec: A helper function for strWidth
• (static) charWidth: Finds the width of an individual character in the given Font
• drawAString: Draws a string of specially formatted text characters to the screen

at the given location

Discussion of the DivisionRDB
• Description: A divisionRDB is an RDB which contains a dividend (top) and divisor

(bot) fields. The RDB draws a straight line to represent the division bar.
• Fields:

• RDB top: The first element of the top of the RDBs
• RDB bot: The first element of the bottom RDBs
• float vbuf: The distance between the division bar and the bottom of top field/top of

the bottom field.
• Methods:

• Various Calc Methods: Used to calculate drawing coordinates
• setTop, setBot: Used to replace the existing top and bot fields.

Discussion of the NRootRDB
• Description: The NRootRDB is used to represent nth root expressions. It draws the root

sign using lines (a mathematical formula is used to find the locations of the lines). The
NRoot consists of additional fields, the radicand (rad) and the degree (deg).

• Fields:
• RDB deg: The first RDB in the degree of (the N) of the root.
• RDB rad: The first RDB in the radicand (the thing being rooted).
• float vbuf: Same as DivisionRDB

• Methods:
• Various calculate methods: for calculating drawing coordinates.
• RecalculateDimensions: If the radicand or degree change, this method fixes

reset this object’s sizes.

SqrtRDB (subclass of NRootRDB)
• Description: Virtually identical to the NRootRDB except the deg field is disabled.
• Fields: No useful fields
• Methods: No useful methods

 8

Example RDB tree for an expression

Example expression:

€

A1
2A2

2
=

bx

4

Representation (previous fields are not shown but can be found by following the incoming arrow
to an RDB backward):

The rootRDB would point to the shaded SymbolRDB. All recursive functions could be called
on this right–most symbol RDB to determine characteristics such as width, height, click
intersections pertaining to the entire expression. If the programmer instead wishes to examine a
sub-expression, she could instead call the recursive functions on the first RDB of that
subexpression. For example, to determine the maximum height of expressions to the right of the
equals sign, she could call highestY on the DivisionRDB without worrying about the first

half of the expression. Likewise, she could call the draw function on SqrtRDB to draw

€

bx

 9

alone.

Other Classes & Files

The RDB data structures for representing mathematical expressions and their associated
Colorboxes constitute the majority of the code in this project. The rest is spread across four
windows forms for the four windows in the program and two classes4 , SymbolData and
NameChecker to represent data regarding handwriting symbols. This section touches on these
classes, the format of strings for the RDB classes and a discussion of various important files
which are used by the program. Many of the following sections are relatively brief as the details
of these classes are well–documented in the code.

Format of Descriptive Text Strings
In Math Speak & Write, we use three different methods for input: keyboard, handwriting and
voice. Our voice and handwriting recognizers are capable of recognizing symbols but can only
output ASCII text descriptions of them. So, we have developed a string format used to describe
mathematical expressions.

• Almost all regular, ASCII text is acceptable and simply creates SymbolRDBs. For instance
“sin x = 10” is a perfectly valid string.

• Spaces delimit RDBs.
For example, “sin x = 10” creates four SymbolRDBs,
“sin” -> “x” ->“=” -> “10”.
Alternatively, “s i n x = 1 0” would create 7 RDBs,
“s” -> “i” -> “n” -> “x” -> “=” -> “1” -> “0”

• Presently, all regular text characters are rendered using the Times New Roman font.
• Greek letters and mathematical symbols used in SymbolRDBs cannot be represented using

ASCII. Instead we use escape sequences starting with “@x” and followed by a two digit
hexadecimal number which specifies their hex code in the Windows Symbol font. (a table
with many of these escape codes is attached as an appendix)

• In addition to the Symbol escape sequences, we define several others. Some of these are
filtered before entering the SymbolRDB parser in the textToScreen function of
CBMainWin as they are impractical to build directly into the RDB datastructures frame
work.

• Some of the special escape sequences are not strictly one–dimensional, but they cover only
special cases and are not fully descriptive of two–dimensional mathematical expressions.

4 There is also a Handwriting Class which is simply a wrapper for the WinCITDll discussed in its own file.

 10

Symbol Font Character using the given two digit hex code@x##

Select Handwriting Alternative # (between 0 and 9)@a#

Make the next term italics, underlined or bold respectively@i,@u,@b

Make the next term a subscript of the previous (if applicable)@l

“Over”- create division bar and put the previous term over the next term@o

Create a division bar@d

Create a Nth Root sign@n

Create a square root sign@s

Raise the previous term to the next term power (if applicable)@p

Cube the previous term@3

Square the previous term@2

Erases the previous term@e

Example Interaction:
1. User speaks “sin x squared equals two over lambda”
2. The Microsoft Speech SDK recognizes the voice and, using our math grammar

specification, outputs the sequence “sin x @2 = 2 @o @x6C” 5
3. The Reco_Event Handler in CBMainWin receives the above text as part of a reco event.
4. The textToScreen function calls addStrWith which parses the string and creates a

RDB tree which it adds to the appropriate position within the existing expression.
5. textToScreen then re-draws the screen.

CBMainWin in Brief
CBMainWin is the main window for the program. It contains menu items for a variety of
features such as enabling and disabling handwriting and speech recognition, saving files in various
formats and undo and redo and training new handwriting symbols. Various notes about the design
follow.

• Undo/Redo: We implement undo by using a .NET ArrayList of serialized RDB trees to
represent the state of the program at each stage from the first blank screen to the present
state. Clicking “Undo” simply takes the final element off the undo arrayList and places it
at the beginning of the “Redo” arrayList and draws it to the screen. Clicking redo does
reverse.

• Handwriting Recognition: We support only recognition of single symbols (by symbol we
mean a handwriting symbol as defined by the CIT recognizer, not necessarily

5 Actually, this isn’t the exact behavior. The speech grammer would return symbols as italics, as is standard for
formatting of mathematic expressions. To avoid confusion, we exclude the italics from this example.

 11

corresponding to a single SymbolRDB). Characters may have an unlimited (?) number of
strokes. We do handwriting recognition using a timer function. After a certain amount of
time has elapsed since the last pen down event, the handwriting is recognized (time is set in
100ms increments using the MacTOs variable).

• Alts Window: When handwriting recognition is enabled, the Alts Window appears. When
handwriting recognition is disabled, the Alts Window disappears. Likewise, the Alts
Window is minimized and maximized with the CBMainWin (actually it uses the Timer
Function for the min/max due to the lack of an appropriate event handler).

Alts Window in Brief
The alts window is initialized with a SymbolData array and delegate (similar to a function
pointer) to a method to call back to when a selection occurs. The contents of the window are
changed with the changeAlts function and the window can be cleared with the clearAlts
function. Alternatives, can be selected either internally or externally using the DoAltN function.

Training Window in Brief
The training window consists mainly of button handlers for adding symbols to current training,
clearing the screen, saving training, aborting training and closing the window. When the window is
opened or after a symbol is trained, a SymChooser dialog is created to prompt the user for a
new symbol to train. Once training of a symbol is complete, it is saved to the data directory using
the CIT Handwriting system’s WinCITDll. Upon closing this window, and event handler
program runs the posttrain program to incorporate new training data into CIT Profile.

SymChooser Window in Brief
The SymChooser Window displays a list of various symbols to train which is a combination of
either upper–case and lower–case alphabetic and Greek letters and numbers and symbols which
are not case sensitive. Upper and lower case letters are explicitly labeled in the setupLB
function and symbols for which training data already exists are marked with an asterix. Buttons
allow users to toggle between upper and lower case letters, delete selected symbols, or close both
this and the parent training window. After close, the SymChooser maintains the name and code
of the chosen symbol so they can be looked up by the Training Window.

SymbolData Class in Brief
Every symbol consists of two parts, a plain text name and an escape sequence (discussed in the
text formatting section). This data is stored in data files with the symbol name on left and the
escape code on the right. (For example, the escape code for the multiplication sign is @xB4) The
SymbolData class uses the ReadData function to read in this data into a pair of ArrayLists,
one for codes and one for names. The elements of these ArrayLists correspond, that is the name
for the Nth element of the codes list is the Nth element of the names list. The SymbolData
objects can be queried for Names and Codes at various indicies using the NameN and CodeN

 12

functions, but are more commonly asked to search to see if they have codes corresponding to
certain names or names corresponding to given codes through the
NameCorrespondingToCode and CodeCorrespondingToName functions respectively.

NameChecker in Brief
The purpose of the NameChecker class is to examine the CIT training directory and obtain a
list of the files. It then parses the file names to turn them into the escape codes used in the RDB
text representation strings. The results of this parse are stored in a hash table which can be
queried to see if various symbols have been stored using the containsName method. Likewise,
files cans can be deleted if the NameChecker is passed the Symbol’s Code (not the actual file
name) in the deleteFile method. Should the contents of the directory change, it can be re-read
and entered into the hash table using overloaded reloadTable method.

Required Files
Our implementation uses three SymbolData files: AllLower.txt, AllUpper.txt and
AllNumSym.txt. Which contain the lower case alphabetic and greek letters, upper case alphabetic
and greek letters and numbers and symbols respectively. In each file, a symbol occupies the left
side followed by a tab and then it’s code (as defined in the text string section). One can add or
remove symbols by simply editting these files.

The Data directory must contain all CIT training files generated by WinCITDll. These files are
named based on (though not in equivalent to) the names of their text representation. The
conversion between text and file name occurs in NameChecker.

HexSingleTokens.xml is a Microsoft Speech 5.1 command and control grammar, specially
designed to allow math input using our text escape sequences for symbols.

The mathMLHexArray.txt contains a list of strings which have corresponding MathML symbols
in mathMLSymbolArray.txt. These two files will be loaded into arrays on the start up of the
application and are used for translating the math expression into MathML. The same files exist
for the TeX translation, texHexArray.txt and texSymbolArray.txt.

Math Speak And Write Help.chm is a Windows compiled help file. This file includes all the user
help files and is accessed in Math Speak & Write by the contents option in the help menu.

SpeakWriteIcon.ico is the application icon.

The PostTrain application and WinCITDll are needed for the MathSpeakAndWrite application
to run.

 13

Microsoft keeps generating Interop.SpeechLib.dll so I’d advise not fooling with it. Ditto for
OUT.DAT and DataCIT, which are generated by PostTrain.

Appendix: Common Escape Sequences
Symbo l Ca se Code Symbo l Ca se Code
Alpha Upper 41 Alpha LOWER 61
Beta Upper 42 Beta LOWER 62
Gamma Upper 47 Gamma LOWER 67
Delta Upper 44 Delta LOWER 64
Epsilon Upper 45 Epsilon LOWER 65
Zeta Upper 5A Zeta LOWER 7A
Eta Upper 48 Eta LOWER 68
Theta Upper 51 Theta LOWER 71
Iota Upper 49 Iota LOWER 69
Kappa Upper 4B Kappa LOWER 6B
Lambda Upper 4C Lambda LOWER 6C
Mu Upper 4D Mu LOWER 6D
Nu Upper 4E Nu LOWER 6E
X i Upper 58 X i LOWER 78
Omicron Upper 4F Omicron LOWER 6F
P i Upper 50 P i LOWER 70
Rho Upper 52 Rho LOWER 72
Sigma Upper 53 Sigma LOWER 73
Tau Upper 54 Tau LOWER 74
Upsilon Upper 55 Upsilon LOWER 75
Phi Upper 46 Phi LOWER 66
Chi Upper 43 Chi LOWER 63
Psi Upper 59 Psi LOWER 79
Omega Upper 57 Omega LOWER 77

Ampersand 26 Integral F2 Product D5
And D9 Intersection C7 Prop to BB
CoProduct Less Than 3C Single Quote A2
Degrees B0 Less Than Eq A3 Sqrt D6
Divided By B8 Not D8 Subset of C9
Dot B7 Not Equal To B9 Summation E5
Element OF 27 O plus C5 There Exists 24
For All 22 O slash C6 Therefore 5C
Gradiant D1 O times C4 Times B4
Greater Than 3E Or DA Union C8
Greater Than eq B3 Partial Derv B6
Infinity A5 Perpendicular 5E

 14

