FPGAs and CPUs

By: Steven Stanek
Robert El-Soudani

In which we mspect how technological changes

over the past 10 years affect performance results of
FPGAs paired with CPUs.

Motivation

FPGASs can be used to create application specific circuits for
specific problems quickly.

Most programs are far too large to be put entirely on FPGAs.

Many programs spend much of their time 1n certain time
consuming sections

— We can find this code using profiling tools such as gprof and Shark

We can pair FPGAs with CPUs:

- FPGAs execute small time consuming functions
— CPUs execute the large amount of code which consumes little time

— For some small algorithms, the entire algorithm can be implemented on the FPGA

The Garp (1997) Implementation

Designed to interact with a MIPS-II CPU through both ISA and

memory
2 bit logic blocks

— Supported several modes including: Several kinds of
LUTs, 3 Adder, variable shift and MUX

— 64 bits of configuration data per blocks
24 blocks wide, at least 32 tall

— Supported a scheme for expanding in vertical
— 16 Center blocks (32 bits) were used for computation
— 7 Blocks for overflows, rounding, “whatever is needed”

— 1 Special control block for I/O

METoTY

4

—

cache

cache

| - - T O 'l
¥ d
instruction data \

¥

J 'L

standard
Processor

|
|
|
|
|
| [
|
|
|
|

__| reconfigurable

array

Interconnect was asymmetric: designed for data to flow from top

to bottom more or less linearly

Design Points

Even when staying with a GARP like design, there are many
potential design points:

— Increasing either vertical or horizontal interconnect

* Makes it easier to shift, permute or use multiple rows

— Increasing the width or height of the array

* More Hardware = array can handle more complex problems

- Modifying permitted connections within a clock cycle (forced superpipelining?)

* (Can affect cycle time

- Modifying memory access methods

* 64 bit memories today

— Changing the contents of a block

* Do more (or less?) with a block. Cycle time constraints.

— Configuration techniques for the array

* As Array size grows, time to configure increases

Our Proposed GOS5 Implementation

* Modern processors have 276 to 27 times the transistor count of
those 1n 1997

— Consistent with predictions of Moore's Law

e Qur choices

— 4 x Width: 72 cells (total), 64 (128 bit) for computation plus a few others
* We needed at least 32 blocks (64 bits) for 64 bit memory accesses

* Examination of our applications showed that the extra 64 bits were often useful
— 128 blocks High (4 times the minimal GARP 1995) value

* Support for larger amounts of code
— Wider (and thus more) horizontal interconnect

* Original horizontal interconnect scheme doesn't scale well: shifts and
permutations require many more wires at 128 bits than 32 bits

— Minor Blocks Changes

Control, Contexts and Memory

* Contexts, allow for many states to be stored in array

— State in each blocks=64 bits of configuration data + 4 bits in registers
— Most hardware 1s invested in interconnect and static logic, not state

— (Can be used for either interthread context switches or intrathread blocks
* Like original GARP, ISA includes instructions for:

— Programming the Array

— Starting and stopping the Array

— Switching Array Contexts

— Storing Values in registers on FPGA

* Memory Accesses: left 32 blocks generate 64 bits addresses

— The Array is connected to the L1 cache
— Blocks can be marked to read into both, one or neither of their registers

— Stalls on L1 misses or too many outstanding accesses

CPU vs. FPGA Then & Now

CPUs have also evolved over the past ten years

— More ILP since 97 (that was the age of the original Pentium)

— The clock speed ratio of FPGA to CPU in the original paper (a little < than 1:1) is
now closer to 1:8

Compiler techniques may also allow CPUs to better exploit
parallelism

Our FPGA: More blocks better interconnect

Original GARP result: “speedups [range] from a factor of 2 to as
high as a factor of 24 for some useful applications™

FPGA Hidden Costs:

— Stalls on Memory Accesses

— Load times into the array

Application #1: Blowtfish Encryption

* The algorithm: 16 iterations of a loop with 5 memory accesses per
iteration.

* Our implementation of inner loop: 10 pipeline stages, 21 rows per
iteration.
— Total of 20 memory accesses per cycle, results in stalls

* [f we can service 20 memory accesses per cycle: 1 block every 4 cycles
* If we can service 8 memory accesses per cycle: 1 block every 12 cycles

* If we can service 4 memory accesses per cycle: 1 block every 20 cycles

* Benchmark results (using author's own code):

— 1 block every 250 cycles on G4
— 1 block every 450-500 cycles on a Athlon XP

Application #2: GZIP Compression

* The Algorithm: repeatedly scan for longer pattern matches within
a window — 1n hindsight, not the most 1deal candidate for fpga

* QOur Implementation:

— 2 stage pipeline to examine 16 bytes at a time
— no real algorithmic changes, very simple, could definitely do better
— Uses 8 rows and around 142 fpga cycles to program

* Analysis:

- Executed gzip on freeBSD machine with AthlonXP 1.53Ghz. Used cycle

counters to estimate lone CPU performance and wrote C sim code for
FPGA.

— Compressed bmps, tifs, large text, small text, highly compressible, not very
compressable and took the average

Application #2: GZIP Results:

90.4% of execution spent in particular loop
Averaged 4.98 fpga cycles per 180.21 cpu cycles
Using 1:8 CPU:FPGA clock

Raw speedup of loop averaged 4.53

Expected speedup of entire program over SOMB with 1 time
programming averaged 4.0908. With 100 programs 4.0897

Expected speedup of entire program over 408B text with 1 time
programming averaged 3.14. At 9 programs speedup was 1.075.

For 11MB repetitive text, speedup even at 100 reprograms was
10.70.

