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In which we inspect how technological changes 
over the past 10 years affect performance results of 
FPGAs paired with CPUs.



Motivation
● FPGAs can be used to create application specific circuits for 

specific problems quickly.
● Most programs are far too large to be put entirely on FPGAs.
● Many programs spend much of their time in certain time 

consuming sections
– We can find this code using profiling tools such as gprof and Shark

● We can pair FPGAs with CPUs:
– FPGAs execute small time consuming functions

– CPUs execute the large amount of code which consumes little time

– For some small algorithms, the entire algorithm can be implemented on the FPGA



The Garp (1997) Implementation
● Designed to interact with a MIPS-II CPU through both ISA and 

memory
● 2 bit logic blocks

– Supported several modes including: Several kinds of
LUTs, 3 Adder, variable shift and MUX

– 64 bits of configuration data per blocks
● 24 blocks wide, at least 32 tall

– Supported a scheme for expanding in vertical
– 16 Center blocks (32 bits) were used for computation
– 7 Blocks for overflows, rounding, “whatever is needed”
– 1 Special control block for I/O

● Interconnect was asymmetric: designed for data to flow from top 
to bottom more or less linearly



Design Points
● Even when staying with a GARP like design, there are many 

potential design points:
– Increasing either vertical or horizontal interconnect

● Makes it easier to shift, permute or use multiple rows
– Increasing the width or height of the array

● More Hardware = array can handle more complex problems
– Modifying permitted connections within a clock cycle (forced superpipelining?)

● Can affect cycle time
– Modifying memory access methods

● 64 bit memories today
– Changing the contents of a block

● Do more (or less?) with a block. Cycle time constraints.
– Configuration techniques for the array

● As Array size grows, time to configure increases



Our Proposed G05 Implementation
● Modern processors have 2^6 to 2^7 times the transistor count of 

those in 1997
– Consistent with predictions of Moore's Law

● Our choices
– 4 x Width: 72 cells (total), 64 (128 bit) for computation plus a few others

● We needed at least 32 blocks (64 bits) for 64 bit memory accesses
● Examination of our applications showed that the extra 64 bits were often useful

– 128 blocks High (4 times the minimal GARP 1995) value
● Support for larger amounts of code

– Wider (and thus more) horizontal interconnect
● Original horizontal interconnect scheme doesn't scale well: shifts and 

permutations require many more wires at 128 bits than 32 bits
– Minor Blocks Changes



Control, Contexts and Memory
● Contexts, allow for many states to be stored in array

– State in each blocks=64 bits of configuration data + 4 bits in registers
– Most hardware is invested in interconnect and static logic, not state
– Can be used for either interthread context switches or intrathread blocks

● Like original GARP, ISA includes instructions for:
– Programming the Array
– Starting and stopping the Array
– Switching Array Contexts
– Storing Values in registers on FPGA

● Memory Accesses: left 32 blocks generate 64 bits addresses
– The Array is connected to the L1 cache
– Blocks can be marked to read into both, one or neither of their registers
– Stalls on L1 misses or too many outstanding accesses



CPU vs. FPGA Then & Now
● CPUs have also evolved over the past ten years

– More ILP since 97 (that was the age of the original Pentium)
– The clock speed ratio of FPGA to CPU in the original paper (a little < than 1:1) is 

now closer to 1:8
● Compiler techniques may also allow CPUs to better exploit 

parallelism
● Our FPGA: More blocks better interconnect
● Original GARP result: “speedups [range] from a factor of 2 to as 

high as a factor of 24 for some useful applications”
● FPGA Hidden Costs:

– Stalls on Memory Accesses
– Load times into the array



Application #1: Blowfish Encryption
● The algorithm: 16 iterations of a loop with 5 memory accesses per 

iteration. 
● Our implementation of inner loop: 10 pipeline stages, 21 rows per 

iteration.
– Total of 20 memory accesses per cycle, results in stalls

● If we can service 20 memory accesses per cycle: 1 block  every 4 cycles
● If we can service 8 memory accesses per cycle: 1 block every 12 cycles
● If we can service 4 memory accesses per cycle: 1 block every 20 cycles

● Benchmark results (using author's own code):
– 1 block every 250 cycles on G4

– 1 block every 450-500 cycles on a Athlon XP



Application #2: GZIP Compression
● The Algorithm: repeatedly scan for longer pattern matches within 

a window – in hindsight, not the most ideal candidate for fpga
● Our Implementation:

– 2 stage pipeline to examine 16 bytes at a time
– no real algorithmic changes, very simple, could definitely do better
– Uses 8 rows and around 142 fpga cycles to program

● Analysis:
– Executed gzip on freeBSD machine with AthlonXP 1.53Ghz.  Used cycle 

counters to estimate lone CPU performance and wrote C sim code for 
FPGA.

– Compressed bmps, tifs, large text, small text, highly compressible, not very 
compressable and took the average



Application #2: GZIP Results:
● 90.4% of execution spent in particular loop
● Averaged 4.98 fpga_cycles per 180.21 cpu cycles
● Using 1:8 CPU:FPGA clock
● Raw speedup of loop averaged 4.53
● Expected speedup of entire program over 50MB with 1 time 

programming averaged 4.0908.  With 100 programs 4.0897
● Expected speedup of entire program over 408B text with 1 time 

programming averaged 3.14.  At 9 programs speedup was 1.075.
● For 11MB repetitive text, speedup even at 100 reprograms was 

10.70.


