
A Current Look at the GARP FPGA CPU Hybrid

Steven Stanek Robert El-Soudani

May 12, 2005

1 Introduction & Background

We compare an updated implementation of a reconfigurable array mated to a CPU core
with the original implementation in the GARP design. We examine the motivations for a
reconfigurable array, briefly discuss the original implementation, mention why we choose
to re-examine it and discuss various design points for an implementation following the
original GARP model. Then we examine the relative performance of our proposed
implementation when compared with modern processors.

1.1 Motivations

FPGAs promise the ability to create applications specific circuits, which can offer
incredible speedups over traditional CPUs for many problems. However, programs are
often too large and ill-suited to be implemented directly on FPGAs, so a combination of
CPU and FPGA seem appropriate for executing many modern applications. The FPGA
can be used to run specially optimized critical portions of programs while the CPU
executes the remainder of the program and engages in activities such as I/O and system
calls while controlling the array itself. Placing the FPGA and CPU on the same die allows
them to exploit the same memory hierarchy and gives the CPU ISA level control over the
reconfigurable array.

It should be noted that programming techniques and models differ by application. Some
algorithms are well suited to hardware implementations or even designed to run quickly
in hardware. These algorithms could easily be implemented on a reconfigurable array in
their entirety. Other algorithms may involve large loops, issue many system calls or have
unpredictable or erratic behavior. For such programs, more cleaver programming models
and compilation techniques are needed to reap the benefits of reprogrammable logic.

1.2 Original GARP

Slightly less than ten years ago, John R. Hauser and John Wawrzynek proposed the
GARP reconfigurable microprocessor. The GARP design consisted of a MIPS-II
microprocessor mated with an reconfigurable array of logic blocks. The array for the
GARP design consisted of a modest 24 rows and 32 or more columns. Each logic block
could perform 2-bit operations on up to four 2-bit inputs, be the receiver or sender in
memory transactions, and could store values in clocked registers. Blocks in the array

were connected via wires in an asymmetric configurations so that operations across rows
were optimized over those in columns.

1.3 Why We Re-examine GARP?

It has been more than eight years since the inception of the GARP during which time
large strides have been made in reconfigurable logic and CPU design. Indeed, a modern
$9.00 FPGA from Xilinx contains many times the number of reconfigurable blocks as
proposed in the original GARP paper and more expensive models contain nearly 1,000
times that number.

CPUs too have evolved. GARP was conceived in the era of the original Pentium and
CPU clock speed increases have outpaced FPGAs. Modern CPUs have better support for
instruction level parallelism and much larger cycle time advantage than they did when the
GARP paper was published.

Our purpose is to leverage the additional hardware resources available on modern chips
to modernize the GARP design and then compare it to the modern CPUs.

2 Design

Generally, our design mirrors GARP with changes in array size, interconnect and block
design. We increase the size of the array and add horizontal interconnect to accommodate
the wider size. These changes also required some corresponding changes in block design
so we could maintain a 64-bit configuration size for each block.

Based on examinations of hardware datasheets from 1996 to 1997 processors, transistor
counts have increased to approximately 64 (26) times since the original GARP paper.
There are many potential areas in which this additional hardware can be invested which
we describe below. We describe, the original GARP design and our modifications to
leverage these additional transistors.

2.1 Width & Height

As originally introduced in the Dynamic Instruction Set Computer paper [4, 5], GARP
encourages a one dimensional programming model in which rows are used to implement
individual operations with execution moving from the top to the bottom of the array.
Thus, increasing the width of the array provides more bit-level parallelism or parallel
operations while increasing the height allows the array to represent larger amounts of
sequential logic.

We chose to increase the width of the array to 72 columns and set a height of 128 rows.
The original GARP array, though 24 blocks (48 bits) wide, only used to center 16 blocks

(32 bits) for memory transactions. In order to generate the 64 bit addresses which are
used on many modern processors, a minimum of 16 additional center blocks were
required. After examination of certain applications, especially in cryptography, we felt
that an operating width of 64 blocks was justified in many applications. Our choice of the
128 row height was simply a result of available hardware resources and our examination
of the logic required for applications.

2.2 Interconnect

Logic blocks must be able to communicate information effectively through vertical and
horizontal 2-bit wire pairs in the array. If direct connections are not possible, intermediate
blocks must be used to connect wires, a waste of clock cycles and hardware resources.
The GARP paper provides details for scaling interconnect to accommodate vertical
growth, but not horizontal. Horizontal growth is significant as some operations such as
shifts and permutations require enormous quantities of interconnect to implement. Some
changes to interconnect also require changes to legal paths in the blocks.

We decided to radically increase the amount of available horizontal interconnect because
the additional width made shift and permutation operations, which had already been
clumsy with the previous scheme, extraordinarily time consuming with our three fold
increase in overall width of the array. By providing a more capable wire network, we
were able to painlessly implement some operations in one row that would have taken 4 or
5 using the original scheme. For the vertical scaling, we used the method suggested in the
original paper which added only four additional wire-pairs. Also, we require that all wires
be driven by a register, banning one of the original GARP clocking schemes. This
convention results from our belief that the longer wires we added would make this
scheme impractical.

2.3 Block Contents

Individual logic blocks have several different operating modes such as lookup tables
(LUTs) that can apply arbitrary bitwise functions, multiplexors and 3-way adders in
addition to logic determining what values are sent to memory and what is output and
which wires to use for input or output. Hardware can be invested in adding additional
computational resources to logic blocks or in space to store additional configuration data.
In the latter case, programming time and memory accesses may also be affected.

We decided that maintaining a 64 bit configuration data size was vital to allow fast and
easy configuration as it is a likely multiple memory bus width. Unfortunately, the
increased counts of horizontal and vertical wires require that more bits be invested in
selecting inputs and outputs for logic blocks so changes in the internal configuration of
blocks were needed. Our changes were manifested in the elimination of certain logic (and
certain logical combinations) which we felt were of limited utility but required precious

configuration bits. This change means that our design is no longer block level compatible
with the original GARP.

Settings for each block include:

• Specification of input and output wires
• Modes of Operation: LUTs, MUXs or 3-Adder
• LUT Contents (for LUTS)
• Optional Shifts and Inversions of some inputs (for MUXs, 3-Adder)
• Whether register values come from memory or are internally generated
• Memory bus output value

2.4 Configuration Techniques

An increase in the number of blocks in the array through changes in width or height
results in more blocks which potentially need to be programmed. Certain compression
techniques and configurations methods can be examined to increase initial programming
speed but much of the speed of the array lies in its use of caches of recent configurations
we call contexts. By increasing the number of these caches, the FPGA can refresh
previous configurations quickly.

We did not consider contexts very much in our evaluation but we would encourage the
investment of any remaining hardware resources in contexts as programming time for
9216 blocks is very long. We did consider some compression methods but time
constraints prevented us exploring them.

2.5 Memory Access

Our memory access scheme is similar to original GARP approach. The left most block of
the array can output values signaling memory requests. Requests use the memory output
values of blocks 4 through 35 to generate a 64 bit memory address. Blocks 36 through 39
generate an 8 bit value to specify the row into which the memory request should be read
to or written from. Reads will write into the specified row on the following array clock
cycle, writes will access the value from the specified row on the same clock cycle.

Memory accesses go through the L1 cache, not directly to the memory system so the
clock speed difference between the reconfigurable array and the CPU allows the L1 to
potentially service many memory requests on a single array cycle. We do not fix this
quantity but instead investigate its effects in our testing. In the event of cache misses or
an excess of memory requests the entire array must be stalled until all outstanding
memory accesses have been completed. Fortunately, the presence of the contexts, the
cache of recent array configurations, allows the array to be switched to a different task on
costly page faults.

2.6 Control

Unlike GARP, we did not specify a processor and ISA for the host processor. Instead, we
assume that the control instructions introduced in the GARP paper also exist for
controlling the our array. Instructions would include loading configurations, starting and
stopping the array, transferring data into array registers and managing cached array
configurations.

3 Evaluation

After examining a variety of potential algorithms and full software applications, we chose
to investigate the full implementation of the Blowfish symmetric (private) key encryption
algorithm and GZIP compression algorithm. We compared the relative performance of
these algorithms on our proposed FPGA implementation with their actual performance on
modern processors such as the Athlon XP and the PowerPC G4. Since the clock speeds of
the array and the CPU differ, we commonly use metrics such as cycles per block so the
actual ratio of speeds can be accounted for later.

3.1 Blowfish

Blowfish is a publicly available block cipher created by Applied Cryptography author
Bruce Schneier. The algorithm operates on 64 bit blocks. It consists of 16 iterations of an
loop with each iteration performing various permutations and substitutions on the result
of the previous iteration. Over 4 KB of subkeys are required for the algorithm--
considerably too much to store in the array itself so they must be stored in memory and
accessed over the memory bus. Every iteration requires five memory accesses for four S-
box subkeys and one P-array subkey. As this is an encryption algorithm, the needed
subkeys are not predictable so caching old values on the array or prefetching is not
useful. [10]

Our implementation of a single loop iteration requires 21 rows and allows for issuing all
five memory requests. Additional memory requests would be needed to feed in
unencrypted data and write out encrypted data. Since the array is 128 rows long, we can
unroll the loop to run four iterations in hardware. The unrolled loop would then issue 20
memory requests for subkeys per clock cycle and if its pipeline is kept filled, could
complete one block every 4 un-stalled array clock cycles.

It is highly doubtful that the result of one block every 4 clock cycles could be maintained
due to the 20 memory requests that are placed. Thus completion rates for various FPGA
memory service rates are shown:

• 20 Memory Requests per cycle: 1 completion every 4 cycles
• 16 Memory Requests per cycle: 1 completion every 8 cycles

• 8 Memory Requests per cycle: 1 completion every 12 cycles
• 4 Memory Requests per cycle: 1 completion every 20 cycles

We also evaluated the Blowfish algorithm on both the PowerPC G4 and the Athlon XP
CPUs. We choose to use the author's version of the source code which was compiled
using gcc with all optimizations turned on. Randomly generated data was encrypted so as
to avoid any L1 cache misses. Neither the Altivec short vector unit on the G4 or the SSE
unit on the Athlon were explictly used, though the compiler may have made some use of
SSE (Altivec support was left off). Our results indicate that the PowerPC can encrypt one
block every 250 clock cycles while the Athlon can encrypt one block every 450 to 500
cycles. We believe the difference lies in the fact that the algorithm was designed for big-
endian machines so the x86 based CPU must expend a large number of computations on
endian conversion.

Figure 1

In the figure 1, we show the throughput of the FPGA at certain clock speeds both in
blocks per second and megabytes per second. We also show the speedup of the FPGA
over the CPU for various ratios of CPU clock speed to FPGA speed and the number of
allowed memory accesses per non-stall cycle. In the latter figure, the CPU assumed to be
the G4, the CPU which did better in our benchmarks. We highlight results which we
think are practical values for the speedups where the memory access per array clock cycle
is approximately the same as the clock speed ratio between the CPU and the array.

Our results show that practical implementations of Blowfish on the reconfigurable array
have speedups ranging roughly from 2 times to 4 times. Obviously a large part of this
limitation is that the array spends an enormous number of cycles waiting for memory for
every cycle of actual computation. With memory limitations, our results fall far short of

the 24 time speedup realized by the original GARP paper using the similar DES
algorithm and even extremely optimistic memory access rate fail to reach the 24 time
speedup point.

3.2 Gzip

Gzip is an open source compression program commonly used in the Unix world. The
bulk of computing that goes into this compression is the repeated sequential scanning of
the input in order to find multiple instances of like strings. The longer the matching
strings are, the more successful the compression algorithm is. During the compression of
an arbitrary tiff image file of 3.75MB, our profiling tools show Gzip spends 90.4% of its
processing time within the inner-loop that sequentially scans input for string matches.
This inner-loop is therefore a prime candidate for implementation in hardware, as any
resulting speedup will benefit the large majority of the program.

The inner-loop in question compares 4 bytes at one memory location to 4 bytes at another
memory location repeatedly incrementing memory addresses until differences are found.
In our hardware implementation, we use one array cycle to issue memory reads and
simultaneously recalculating memory addresses for potential further memory accesses.
To further exploit the parallelism offered by our array, we do comparisons in 8 byte
increments. In our second array cycle, 8 bytes from each stream are compared, the length
in bytes of the match is computed and stored in an array row register where the CPU can
locate it. An array row register representing the array’s status is also updated every array
clock. The two cycles are overlapped so that we have a 2-stage pipeline of the original
loop that can compare 16 bytes per array clock. While the array is computing, the CPU
will poll the array’s status and results registers. Once the length of the match is
computed, the CPU will stop the array and continue with the rest of the compression
algorithm. Implementing this in our array took only 8 rows due to their large width
making it possible to do multiple operations in a single row. This implementation
represents the most direct, naïve approach for this algorithm, as one would imagine that
in the remaining 120 array rows, multiple searches could be instantiated or the entire
algorithm could be redesigned to lend itself to the array hardware for far superior
performance benefits, memory permitting.

Evaluation of our implementation was done on an AthlonXP 1.53Ghz machine. We used
the x86 architectures provisions for counting cycles to get statistics on how long the CPU
implementation takes to run Gzip on a collection of different characteristics. Our sample
input consisted of large and small files as well as files with high, medium, and low
compression ratios, taken both individually and together to get input-specific
performance characteristics as well as a very general average. A C implementation of the
array program described above was used to estimate the number of array cycles needed to
complete the program on the same set of inputs. Programming of the array is estimated to
take 142 array cycles considering the expected memory bandwidth and number of array
blocks that need configuration (unconfigured blocks are left unused and disabled).

We found our hybrid CPU-FPGA implementation achieved an average speedup of 4 over
the program running on the CPU alone. For large enough inputs in the tens of megabytes,
the number of times the array was reprogrammed was negligible, although for small files
in the tens of kilobytes, the speedup decreased sharply and after only 10 reprograms of
the array all speedup was lost. Also, for highly compressible files, the hybrid
implementation showed much more drastic speedup than for files which were not very
compressible. However, for all inputs tested, there was a clear speedup even when
assuming around 5 array reprograms. Figure 2 shows speedup numbers in greater detail
for various input types, assuming a 1:8 CPU to array clock ratio for our hybrid
implementation of Gzip versus the CPU implementation of the program being run on an
AthlonXP alone.

Input
type

Input
size

Compression
ratio

Number of Reprograms

 1 5 10 50 100
Text 408B 1.73 3.14 1.06 .993 - -
Image 11MB 2.17 3.88 3.88 3.88 3.88 3.88
Text 11MB 289.47 10.79 10.79 10.78 10.74 10.70
Mix 50MB 2.62 4.09 4.09 4.09 4.09 4.09

Figure 2 Speedup of Gzip program on CPU-FPGA relative to single CPU implementation

4 Conclusion

After analyzing the performance of real programs with respect to our updated design of
the Garp processor, we are excited to see that the design still makes sense. There is
definitely a handful of commonly used applications such as encryption or compression
which permeates even the most casual computer user’s workload that could readily
benefit from a hybrid architecture such as the Garp processor.

The variation in speedup due to variations in input characteristics suggest that
programming of such an architecture will require caution and care. Quick heuristics may
be necessary on input data to determine whether to activate the array for a particular input
or to do the equivalent on the CPU. Prefetching of array configurations as scheduled by a
clever programmer can potentially offset the startup programming time of the array, and
when combined with the multiple contexts provided by a cache of configurations, array
programming can be made negligible.

It is important to note that here we employed the most simple approach to programming
the array. Yet, even for this naïve, straightforward port from single CPU to hybrid CPU-
FPGA implementation, a speedup of around 4 was achieved. With such architectures
available, one must assume that potential performance increases will attract the attention
of clever software engineers, and algorithms will be tailored for such architectures,
potentially increasing performance speedup even more.

Even today this architecture remains very attractive. With proof that in the simplest case
such an architecture can provide large performance increases, it should now be the point
of further research to augment and mature the way the reconfigurable hardware is used.
The rigid structure of the array design makes it possible to imagine relocatable
configurations managed by the kernel much like the rest of the program is managed in
virtual memory. Programming model changes for this architecture are not required to
prove its worth, but it is expected that they are worth exploration. Also, programming the
array by hand proves very difficult, perhaps even more so than directly programming x86
assembly. A key area of interest must be providing automatic compilation of code to
configurable hardware. This is key for the success of such an architecture.

Currently we are at the end of a trend. We designers have gotten use of so many
transistors that increased cache sizes are providing negligible performance and CPUs
already exploit as much ILP as they can given their sequential structure. Furthermore, the
clock speed of the CPU is not expected to continue ramping up as quickly as it has in the
past due to physical limitations. Configurable hardware, on the other hand, is relatively
young and FPGA development may provide an alternative avenue for performance
increases in a hybrid chip. Speedup of future applications must come from a new
direction, and a hybrid solution offers definitive results.

5 Resources

[1] David Andrews, Douglas Niehaus, Razali Jidin, Programming Models for

Hybrid FPGA-CPU Computational Components: A Missing Link, University of
Kansas, July 2004.

[2] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, Yury Markovskiy, John

Wawrzynek, and AndrŽ DeHon, Stream Computations Organized for

Reconfigurable Execution (SCORE): Introduction and Tutorial, extended
version of the paper appearing in Conference on Field Programmable Logic and
Applications, August 28--30, 2000.

[3] Micheal J. Flynn, Very High Speed Computing Systems, Proceedings of IEEE,

vol 54, no. 12, December 1966.

[4] John R. Hauser and John Wawrzyneck, Garp: A MIPS Processor with a

Reconfigurable Coprocessor, Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM '97, April 16-18, 1997).

[5] John R. Hauser, The GARP Architecture, University of California Berkeley,

Department of Electrical Engineering and Computer Science, October 1997.

[6] John Hennessey and David Patterson, Computer Architecture A Quantitative

Approach, 3rd edition, Morgan Kaufmann, 2003 (Appendix G).

[7] Andre Hon, DPGA-Coupled Microprocessors: Commodity ICs for the Early

21st Century, Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, April 1994, pp 31-39.

[8] Micheal J Wirthlin and Brad L. Hutchings, A dynamic instruction set computer,

Symposium on FPGAs for Custom Computing Machines, April 1995, pp 99-
107.

[9] R. Ramakrishna Rau and Joseph A. Fisher, Instruction Level Parallel

Processing: History, Overview & Perspective

[10] Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and SourceCode

in C, 2nd edition, JohnWiley and Sons, 1996.

